Home / Course catalog / AI (KI) Development, KI Manager Weiterbildung V.4

Programming

AI (KI) Development, KI Manager Weiterbildung V.4


Content
  • seesion1 :Intro to the course and AI history and Applications in real life
  • Intro to the course and AI history and Applications in real life
  • seesion1 Part 1
  • Session 1 Part 2
  • Session 1 Part 3
  • Session 1 Part 4
  • Session 1 Part 5
  • Communication and soft skills
  • Communication and Soft Skills Lec1.pptx
  • Session 2 Part 1
  • Session 2 Part 2
  • Session 2 Part 3
  • Session 2 Part 4
  • Session 3 : Introduction to Python and environment setup (8 units)
  • Introduction to Python and environment setup (8 units)
  • Session 3 Part 1
  • Session 3 Part 2
  • Py-T01.pdf
  • Session 3 Part 3
  • Session 3 Part 4
  • Session 4 Communication and soft skills
  • ommunication and soft skills
  • Session 4 Part 1
  • Session 4 Part 2
  • Session 4 Part 3
  • test1 commenication
  • Session 5 : Pyhton Basic Syntax part 2 (8 UE)
  • Session 5 Part 1
  • Session 5 Part 2
  • Session 5 Part 3
  • Session 5 Part 4
  • Session 6 : Control flow: conditionals and loops (8 units)
  • Session 6 Part 1 Control flow: conditionals and loops (8 units)
  • Session 6 Part 2
  • Control flow: conditionals and loops (8 units)
  • Control flow: conditionals and loops (8 units)
  • Session 6 Part 3
  • Session 6 Part 4
  • session 7 Time management and productivity
  • Session 7 Part 1
  • Session 7 Part 2
  • Session 7 Part 3
  • Session 7 Part 4
  • Time Management Lec1.pptx
  • Session 8 Functions and modules (8 units)
  • Session 8 Part 1
  • Session 8 Part 2
  • Functions and modules (8 units)
  • Session 8 Part 3
  • Session 8 Part 4
  • Session 9 Time management and productivity
  • Session 9 Part 1
  • Session 9 Part 2
  • Session 9 Part 3
  • Session 9 Part 4
  • Time Management Lec2.pptx
  • Session 10 Object-Oriented Programming basics (8 units)
  • Session 10 Part 1
  • Session 10 Part 2
  • Session 10 Part 3
  • Session 10 Part 4
  • Session 11 Data structures: lists, tuples, dictionaries (8 UE)
  • Session 11 Part 1
  • Session 11 Part 2
  • Session 11 Part 3
  • Session 11 Part 4
  • Session 12 : Agile
  • Session 12 Part 1
  • Session 12 Part 2
  • Session 12 Part 3
  • Agile
  • Time Management and Productivity Exam
  • Session 12 Part 4
  • Session 13 Advanced data structures: sets, stacks, queues (8 units)
  • Session 13 Part 1
  • Advanced data structures: sets, stacks, queues (8 units)
  • Session 13 Part 2
  • Session 13 Part 3
  • Session 13 Part 4
  • Session 14 Agile
  • Session 14 Part 1
  • Session 14 Part 2
  • Agile Lecture 2.pptx
  • Session 15 Basic algorithms: sorting and searching (8 units)
  • OOP_Task1.pdf
  • Session 15 Part 1
  • Session 15 Part 2
  • Basic algorithms: sorting and searching Task1
  • Session 15 Part 3
  • Basic algorithms: sorting and searching (8 units)
  • Basic algorithms: sorting and searchingTask2.pdf
  • Session 15 Part 4
  • Session 16 Agile
  • Session 16 Part 1
  • Session 16 Part 2
  • Session 16 Part 3
  • Session 16 Part 4
  • Agile
  • Session 17 Problem-solving techniques (8 units)
  • Session 17 Part 1
  • Session 17 Part 2
  • Session 17 Part 3
  • Session 17 Part 4
  • Session 18 Agile Methodes and practice (8 UE)
  • Session 18 Part 1
  • Session 18 Part 2
  • Agile
  • Session 18 Part 3
  • Session 18 Part 4
  • Agile Lecture 4.pdf
  • Agile Test 1
  • Session 19 Automation and working with external APIs (8 units)
  • Session 19 Part 1
  • Session 19 Part 2
  • Session 19 Part 3
  • Session 19 Part 4
  • Session 20 Probability basics (8 units)
  • Session 20 Part 1
  • Session 20 Part 2
  • Bayes Theorem.pptx
  • Probability 1.pptx
  • Session 20 Part 3
  • Session 20 Part 4
  • Session 21 Agile
  • Agile
  • Session 21 Part 1
  • Session 21 Part 2
  • Session 21 Part 3
  • Session 21 Part 4
  • Session 22 Statistics fundamentals (8 units)
  • Session 22 Part 1
  • Session 22 Part 2
  • Session 22 Part 3
  • Session 22 Part 4
  • Session 23 Agile
  • Session 23 Part 1
  • Session 23 Part 2
  • Session 23 Part 3
  • Agile
  • Session 24 Linear algebra introduction (8 units)
  • Session 24 Part 1
  • Session 24 Part 2
  • Session 24 Part 3
  • Session 24 Part 4
  • Session 25 Advanced linear algebra (8 units)
  • Session 25 Part 1
  • Advanced linear algebra (8 units)
  • Session 25 Part 2
  • Session 25 Part 3
  • Session 25 Part 4
  • Session 26 Agile
  • Session 26 Part 1
  • Session 26 Part 2
  • Session 26 Part 3
  • Session 27 Quiz
  • Session 27 Part 1
  • Session 27 Part 2
  • Session 27 Part 3
  • Session 27 Part 4
  • Session 28 project management
  • Session 28 Part 1
  • Session 28 Part 2
  • Project Management Lecture
  • Agile Test 2
  • Session 28 Part 3
  • Session 28 Part 4
  • Session 29 Introduction to Numpy and data manipulation (8 units)
  • Session 29 Part 1
  • Session 29 Part 2
  • Session 29 Part 3
  • Session 30 Pandas for data analysis (8 units)
  • Session 30 Part 1
  • Session 30 Part 2
  • Session 30 Part 3
  • Session 30 Part 4
  • Session 31 Agile
  • Session 31 Part 1
  • Session 31 Part 2
  • Session 31 Part 3
  • Session 31 Part 4
  • Session 31 Part 5
  • Session 32 Data visualization with Matplotlib and Seaborn (8 units)
  • Session 32 Part 1
  • Session 32 Part 2
  • Session 32 Part 3
  • Session 32 Part 4
  • Session 33 Exploratory Data Analysis (EDA) techniques (8 units)
  • Session 33 Part 1
  • Session 33 Part 2
  • Session 33 Part 3
  • Session 33 Part 4
  • Session 33 Part 5
  • Session 34 Data analysis project (8 units)
  • Session 34 Part 1
  • Session 34 Part 2
  • Session 34 Part 3
  • Session 34 Part 4
  • Session 35 project managment
  • Session 35 Part 1
  • Session 35 Part 2
  • Session 35 Part 3
  • Session 35 Part 4
  • Project Management .pptx
  • Session 36 Introduction to Machine Learning (8 units)
  • Session 36 Part 1
  • Session 36 Part 2
  • Session 36 Part 3
  • Session 36 Part 4
  • Session 37 Quiz
  • Session 37 Part 1
  • Session 37 Part 2
  • Session 37 Part 3
  • Session 37 Part 4
  • web-content_1730989779
  • Session38Supervised learning techniques
  • Session 38 Part 1
  • Session 38 Part 2
  • Session 38 Part 3
  • Session 38 Part 4
  • Session 39 Unsupervised learning techniques
  • Session 39 Part 1
  • Session 39 Part 2
  • Session 39 Part 3
  • Session 39 Part 4
  • Unsupervised learning techniques: clustering and association (8 units) t
  • Unsupervised learning techniques: clustering and association (8 units) t
  • ML3  - Classisfication ( Logistic Regression and Model Evaluation )
  • Session 40 - project management
  • project management
  • Session 40 Part 1
  • Session 40 Part 2
  • Session 40 Part 3
  • Session 40 Part 4
  • Session 41- Natural Language Processing (NLP) basics (8 units)
  • Natural Language Processing (NLP) basics (8 units)
  • Natural Language Processing (NLP) basics (8 units)
  • Session 41 Part 1
  • Session 41 Part 2
  • Session 41 Part 3
  • Session 41 Part 4
  • Session 42 -Project management tools and techniques
  • Project management tools and techniques
  • Session 42 Part 1
  • Session 42 Part 2
  • Session 42 Part 3
  • Session 42 Part 4
  • Session 43 Machine learning project (8 units)
  • Session 43 Part 1
  • Session 43 Part 2
  • Session 43 Part 3
  • Session 43 Part 4
  • Session 44 - Neural networks and deep learning concepts (8 units)
  • Neural networks and deep learning concepts (8 units)
  • Session 44 Part 1
  • Session 44 Part 2
  • Session 44 Part 3
  • Session 44 Part 4
  • Session 45 -Project management tools and techniques
  • Session 45 Part 1
  • Session 45 Part 2
  • Session 45 Part 3
  • Session 46 - Keras and TensorFlow basics (8 units)
  • Session 46 Part 1
  • Session 46 Part 2
  • Session 46 Part 3
  • Session 46 Part 4
  • Session 47 - Design Thinking
  • Session 47 Part 1
  • Session 47 Part 2
  • Session 47 Part 3
  • Session 47 Part 4
  • Session 48 - Advanced TensorFlow (8 units)
  • Session 48 Part 1
  • Session 48 Part 2
  • Session 48 Part 3
  • Session 48 Part 4
  • Session 48 Part 5
  • Session 49 - Convolutional Neural Networks (CNNs) (8 units)
  • Session 49 Part 1
  • Session 49 Part 2
  • Session 49 Part 3
  • Session 49 Part 4
  • Session 50 - Design Thinking
  • Session 50 Part 1
  • Session 50 Part 2
  • Session 50 Part 3
  • Session 50 Part 4
  • Session 51 - Recurrent Neural Networks (RNNs) (8 units)
  • Session 51 Part 1
  • Session 51 Part 2
  • Session 51 Part 3
  • Session 51 Part 4
  • Session 52 - Design Thinking
  • Session 52 Part 1
  • Session 52 Part 2
  • Session 52 Part 3
  • Session 53 - Long Short-Term Memory (LSTM) networks (8 units)
  • Session 53 Part 1
  • Session 53 Part 2
  • Session 53 Part 3
  • Session 53 Part 4
  • Long Short-Term Memory (LSTM) networks (8 units)
  • Long Short-Term Memory (LSTM) networks (8 units)
  • Session 54-Transfer learning (8 units)
  • Session 54 Part 1
  • Session 54 Part 2
  • Session 54 Part 3
  • Session 54 Part 4
  • Session 55 - Design Thinking
  • Session 55 Part 1
  • Session 55 Part 2
  • Session 55 Part 3
  • Session 55 Part 4
  • Session 56 -Deep learning project (8 units)
  • Session 56 Part 1
  • Session 56 Part 2
  • Session 56 Part 3
  • Session 56 Part 4
  • Session 57 Creative Thinking
  • Session 57 Part 1
  • Session 57 Part 2
  • Session 57 Part 3
  • Creative Thinking
  • Session 58 Introduction to Generative AI (8 units)
  • Session 58 Part 1
  • Session 58 Part 2
  • Session 58 Part 3
  • Session 58 Part 4
  • Session 59 Image generation with Img2Img (8 units)
  • Session 59 Part 1
  • Session 59 Part 2
  • Session 59 Part 3
  • Session 59 Part 4
  • Session 60 Creative Thinking
  • Creative Thinking Lecture
  • Session 60 Part 1
  • Session 60 Part 2
  • Session 60 Part 3
  • Session 60 Part 4
  • Session 61 - Multi-model integration (8 units)
  • Session 61 Part 1
  • Session 61 Part 2
  • Session 61 Part 3
  • Session 61 Part 4
  • Session 62 - Basic German for Tech Professionals
  • Session 62 Part 1
  • Session 62 Part 2
  • Session 62 Part 3
  • Session 62 Part 4
  • Session 63 - Large Language Models (LLMs) (8 units)
  • Session 63 Part 1
  • Session 63 Part 2
  • Session 63 Part 3
  • Session 63 Part 4
  • Session 64 - Fine-tuning models (8 units)
  • Session 64 Part 1
  • Session 64 Part 2
  • Session 64 Part 3
  • Session 64 Part 4
  • Session 65 -Basic German for Tech Professionals
  • Session 65 Part 1
  • Session 65 Part 2
  • Session 65 Part 3
  • Session 65 Part 4
  • Session 66 - OpenAI tools and applications (8 units)
  • Session 66 Part 1
  • Session 66 Part 2
  • Session 66 Part 3
  • Session 66 Part 4
  • Session 67 Basic German for Tech Professionals
  • Session 67 Part 1
  • Session 67 Part 2
  • Session 67 Part 3
  • Session 67 Part 4
  • Session 68 - Langchain and llamaIndex (8 units)
  • Session 68 Part 1
  • Session 68 Part 2
  • Session 68 Part 3
  • Session 68 Part 4
  • Langchain and llamaIndex (8 units)
  • Langchain and llamaIndex (8 units)
  • Session 69Vector databases (8 units)
  • Session 69 Part 1
  • Session 69 Part 2
  • Session 69 Part 3
  • Session 69 Part 4
  • Session 70 IIntermediate German for Tech Professionals
  • Session 70 Part 1
  • Session 70 Part 2
  • Session 71 Intermediate German for Tech Professionals
  • Intermediate German for Tech Professionals
  • Session 71 Part 1
  • Session 71 Part 2
  • Session 71 Part 3
  • Intermediate German for Tech Professionals
  • Session 72 Generative AI project (8 units)
  • Session 72 Part 1
  • Session 72 Part 2
  • Session 72 Part 3
  • Session 72 Part 4
  • Session 73Intermediate German for Tech Professionals
  • Session 73 Part 1
  • Intermediate German for Tech Professionals
  • Session 73 Part 2
  • Session 73 Part 3
  • Session 73 Part 4
  • Intermediate German for Tech Professionals
  • Session 74 Quiz
  • Session 74 Part 1
  • Session 74 Part 2
  • Session 74 Part 3
  • Session 74 Part 4
  • Session 75 Introduction to MLOps (8 units)
  • Introduction to MLOps (8 units)
  • Session 75 Part 1
  • Session 75 Part 2
  • Session 75 Part 3
  • Session 76 Version control with Git and GitHub (8 units)
  • Session 76 Part 1
  • Session 76 Part 2
  • Session 76 Part 3
  • Session 76 Part 4
  • Session 77 German for job applications and CV writing
  • Session 77 Part 1
  • Session 77 Part 2
  • Session 77 Part 3
  • Session 77 Part 4
  • German for job applications and CV writing
  • Session 98 Containerization with Docker (8 units)
  • Session 78 Part 1
  • Session 78 Part 2
  • Session 78 Part 3
  • Session 79 Frontend basics (HTML, CSS, Bootstrap) (8 UE)
  • Session 79 Part 1
  • Session 79 Part 2
  • Session 79 Part 3
  • Session 79 Part 4
  • Session 80 German for job applications and CV writing
  • Session 80 Part 1
  • German for job applications and CV writing
  • Session 80 Part 2
  • Session 80 Part 3
  • Session 80 Part 4
  • Unterricht6.pdf
  • Session 81Backend development with FastAPI (8 units)
  • Session 81 Part 1
  • Session 81 Part 2
  • Session 81 Part 3
  • Session 82 German for job applications and CV writing
  • Session 82 Part 1
  • Session 82 Part 2
  • Session 83 Flask for web applications (8 units)
  • Session 83 Part 1
  • Session 83 Part 2
  • Session 83 Part 3
  • Session 83 Part 4
  • Session 84 Streamlit for data apps (8 units)
  • Session 84 Part 1
  • Session 84 Part 2
  • Session 84 Part 3
  • Session 84 Part 4
  • Session 85 German for job applications and CV writing
  • Session 85 Part 1
  • Session 85 Part 2
  • Session 85 Part 3
  • Session 85 Part 4
  • Session 85 Part 5
  • Session 86MlFlow for model management (8 units)
  • Session 86 Part 1
  • Session 86 Part 2
  • Session 86 Part 3
  • Session 86 Part 4
  • Session 87 Resume and cover letter workshops
  • Session 87 Part 1
  • Session 87 Part 2
  • Session 87 Part 3
  • Session 87 Part 4
  • Session 88Monitoring and debugging ML systems (8 units)
  • Session 88 Part 1
  • Session 88 Part 2
  • Session 88 Part 3
  • Session 88 Part 4
  • Session 89CI/CD pipelines (8 units)
  • Session 89 Part 1
  • Session 89 Part 2
  • Session 89 Part 3
  • Session 89 Part 4
  • Session 90Resume and cover letter workshops
  • Session 90 Part 1
  • Session 90 Part 2
  • Session 90 Part 3
  • Session 90 Part 4
  • Session 91 Production deployment (8 units)
  • Session 91 Part 1
  • Session 91 Part 2
  • Session 91 Part 3
  • Session 91 Part 4
  • Session 92 Resume and cover letter workshops
  • Session 92 Part 1
  • Session 92 Part 2
  • Session 92 Part 3
  • Session 93Azure AI Studio (8 units)
  • Session 93 Part 1
  • Session 93 Part 2
  • Session 93 Part 3
  • Session 93 Part 4
  • Session 94 Amazon Bedrock (8 units
  • Session 94 Part 1
  • Session 94 Part 2
  • Session 94 Part 3
  • Session 94 Part 4
  • Session 95 Resume and cover letter workshops
  • Session 95 Part 1
  • Session 95 Part 2
  • Session 95 Part 3
  • Session 96 MLOps project (8 units)
  • Session 96 Part 1
  • Session 96 Part 2
  • Session 96 Part 3
  • Session 96 Part 4
  • Session 97 German for job applications and CV writing
  • Session 97 Part 1
  • Session 97 Part 2
  • Session 98Transformer’s introduction (8 units)
  • Session 98 Part 1
  • Session 98 Part 2
  • Session 98 Part 3
  • Session 98 Part 4
  • Session 99 BERT and other transformer models (8 units)
  • Session 99 Part 1
  • Session 99 Part 2
  • Session 99 Part 3
  • Session 99 Part 4
  • Session 100 German for job applications and CV writing
  • Session 100 Part 1
  • Session 100 Part 2
  • Session 100 Part 3
  • Session 101Advanced NLP techniques (8 units)
  • Session 101 Part 1
  • Session 101 Part 2
  • Session 101 Part 3
  • Session 101 Part 4
  • Session 101 Part 5
  • Session 101 Part 6
  • Session 102German for job applications and CV writing
  • Session 102 Part 1
  • Session 102 Part 2
  • Session 102 Part 3
  • Session 103 Computer vision applications (8 units)
  • Session 103 Part 1
  • Session 103 Part 2
  • Session 103 Part 3
  • Session 103 Part 4
  • Session 104 Advanced computer vision techniques (8 units)
  • Session 104 Part 1
  • Session 104 Part 2
  • Session 104 Part 3
  • Session 104 Part 4
  • Session 105 German for job applications and CV writing
  • Session 105 Part 1
  • Session 105 Part 2
  • Session 105 Part 3
  • Session 106 AI ethics and bias (8 units)
  • Session 106 Part 1
  • Session 106 Part 2
  • Session 106 Part 3
  • Session 106 Part 4
  • Session 107 Interview skills and job search strategies
  • Session 107 Part 1
  • Session 107 Part 2
  • Session 108 AI security (8 units)
  • Session 108 Part 1
  • Session 108 Part 2
  • Session 108 Part 3
  • Session 108 Part 4
  • Session 109 Quiz
  • Session 109 Part 1
  • Session 109 Part 2
  • Session 110 Project ideation and planning (8 units)
  • Session 110 Part 1
  • Session 110 Part 2
  • Session 110 Part 3
  • Session 110 Part 4
  • Session 111 Data collection and preprocessing (8 units)
  • Session 111 Part 1
  • Session 111 Part 2
  • Session 111 Part 3
  • Session 111 Part 4
  • Session 112 Interview skills and job search strategies
  • Session 112 Part 1
  • Session 112 Part 2
  • Session 112 Part 3
  • Session 112 Part 4
  • Session 113 Interview skills and job search strategies
  • Session 113 Part 1
  • Session 113 Part 2
  • Session 113 Part 3
  • Session 114 Model evaluation and refinement (8 units)
  • Session 114 Part 1
  • Session 114 Part 2
  • Session 114 Part 3
  • Session 114 Part 4
  • Session 115 Interview skills and job search strategies
  • Session 115 Part 1
  • Session 115 Part 2
  • Session 115 Part 3
  • Session 115 Part 4
  • Session 116 Interview skills and job search strategies
  • Session 116 Part 1
  • Session 116 Part 2
  • Session 116 Part 3
  • Session 117 Frontend and backend integration (8 units)
  • Session 117 Part 1
  • Session 117 Part 2
  • Session 117 Part 3
  • Session 118 Final project presentations (8 units)
  • Session 118 Part 1
  • Session 118 Part 2
  • Session 118 Part 3
  • Session 118 Part 4
  • Session 119 Interview skills and job search strategies
  • Session 119 Part 1
  • Session 119 Part 2
  • Session 119 Part 3
  • Session 119 Part 4
  • Session 120 Arbeiten mit BA Jobbörse BERUFNET und Profilerstellung
  • Session 120 Part 2
  • Session 120 Part 3
  • Session 121 Interview skills and job search strategies
  • Session 121
  • Session 122 Arbeiten mit BA Jobbörse BERUFNET und Profilerstellung
  • Session 122 Part 1
  • Session 122 Part 2
  • Session 122 Part 3
  • Session 123 Professional online presence and networking
  • Session 123 Part 1
  • Session 123 Part 2
  • Session 123 Part 3
  • Session 124 Professional online presence and networking
  • Session 124 Part 1
  • Session 124 Part 2
  • Session 124 Part 3
  • Session 124 Part 4
  • Session 125 Rückblick Maßnahme und Beendigung
  • Session 125 Part 1
  • Session 125 Part 2
  • Session 125 Part 3
Completion rules
  • All units must be completed